Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Sodium trichloromethanesulfonate monohydrate

Emiliana Damian,* Lars Eriksson and Magnus Sandström

Department of Physical, Inorganic and Structural Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden Correspondence e-mail: emiliana@struc.su.se

Received 9 June 2006 Accepted 7 July 2006 Online 11 August 2006

Sodium trichloromethanesulfonate monohydrate, Na⁺·CCl₃-SO₃⁻·H₂O, crystallizes in $P2_1/a$ with all the atoms located in general positions. The trichloromethanesulfonate (trichlate) anion consists of pyramidal SO₃ and CCl₃ groups connected *via* an S–C bond in a staggered conformation with approximate $C_{3\nu}$ symmetry. The water molecule is hydrogen bonded to the sulfonate O atoms, with one water H atom forming weak bifurcated O–H···O hydrogen bonds to two different trichlate ions. Two water O atoms and three O atoms from different SO₃ groups form a square-pyramidal arrangement around the sodium ion.

Comment

Trichloromethanesulfonate (trichlate, $CCl_3SO_3^{-}$) salts were prepared more than 150 years ago (Kolbe, 1845). The trichlate and the related trifluoromethanesulfonate (triflate, $CF_3SO_3^{-}$) and mesylate (CH₃SO₃⁻) anions have been studied by means of vibrational spectroscopy complemented by normal coordinate analysis (Miles et al., 1969; Bürger et al., 1970). Gejji et al. (1994) performed quantum chemical calculations of the structure and vibrational frequencies of trichloromethanesulfonic acid, CCl₃SO₃H, and its anion. Edwards & Smith (1991) reported vibrational assignments of the acid and determined its dissociation constant in 2 mol dm⁻³ aqueous solution by Raman measurements. A recent ³⁵Cl nuclear quadrupole resonance study concluded that the trichlate anion has weaker coordination ability than several chloroacetate anions (Wulfsberg et al., 2004). The present study of sodium trichloromethanesulfonate monohydrate (CCl₃SO₃Na·H₂O) seems to be the first crystal structure reported containing a trichlate anion.

The crystal structure is described in the space group $P2_1/a$, with all atoms located on general sites (4*e*). The pyramidal SO₃ and CCl₃ groups of the trichlate anion are in a staggered conformation (Fig. 1 and Table 1). One water H atom (H42) is involved in a weak bifurcated hydrogen bond to two O atoms, O1 and O2, of different trichlate ions, while the other H atom (H41) forms a shorter hydrogen bond (Fig. 1 and Table 2). The

Figure 1

The trichlate ion and the environment of the sodium ion and the water molecule (40% probability displacement ellipsoids). Broken lines indicate hydrogen bonds (see Table 2 for geometric details). [Symmetry codes: (i) $-x - \frac{1}{2}$, $y + \frac{1}{2}$, -z; (ii) $-x - \frac{1}{2}$, $y - \frac{1}{2}$, -z; (iii) -x, -y, -z; (iv) x, y - 1, z; (v) -x, -y - 1, -z.]

 Na^+ ion has an almost square-pyramidal environment of O atoms from two water molecules and three different SO₃ groups, with a mean $Na^+ \cdots O$ distance of 2.38 Å.

As shown in Table 3, the mean S-O bond distance is not significantly influenced by hydrogen bonding or by replacing the $-CCl_3$ group with $-CH_3$ or $-CF_3$. The C-S bond increases considerably from the mesylate $(H_3C-SO_3^-)$ to the triflate $(F_3C-SO_3^-)$ ion, with an even longer C-S bond for the trichlate $(Cl_3C-SO_3^-)$, as predicted by theoretical studies. The electron-withdrawing effect of the electronegative Cl and F atoms evidently weakens the C-S bond and makes the O-S-O angles about 2° larger than in the mesylate ion. The mean C-Cl bond length and Cl-C-Cl angle determined in this work agree well with the values found for trichloromethane (Sutton, 1965).

Experimental

Crustal data

 $CCl_3SO_3Na\cdot H_2O$ was obtained from a solution prepared by stirring and heating [323 (2) K] wax-like crystals of trichloromethanesulfonyl chloride (CCl_3SO_2Cl , 2.547 g, Aldrich) in an excess (36 ml) of 1 mol dm⁻³ sodium hydroxide solution (Edwards & Smith, 1991). After evaporating the solvent, first in a rotary evaporator at 355 (2) K and then at reduced pressure in a vacuum desiccator, colourless crystals were obtained, which were recrystallized from water.

Na ⁺ ·CCl ₃ O ₃ S ⁻ ·H ₂ O	Z = 4
$M_r = 239.43$	$D_x = 2.072 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/a$	Mo $K\alpha$ radiation
$a = 10.727 (7) \text{\AA}$	$\mu = 1.47 \text{ mm}^{-1}$
$b = 5.828 (3) \text{ Å}_{0}$	T = 291 (2) K
c = 12.613 (9) Å	Pentagonal prism, colourless
$\beta = 103.24 \ (8)^{\circ}$	$0.5 \times 0.3 \times 0.1 \text{ mm}$
$V = 767.6 (9) \text{ Å}^3$	

metal-organic compounds

Data collection

Stoe IPDS diffractometer	6794 measured reflections
φ scans	1805 independent reflections
Absorption correction: numerical	1312 reflections with $I > 2\sigma(I)$
(X-RED; Stoe & Cie, 1997)	$R_{\rm int} = 0.100$
$T_{\rm min} = 0.579, \ T_{\rm max} = 0.953$	$\theta_{\rm max} = 27.8^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$	All H-atom parameters refined $w = 1/[\sigma^2(F^2) + (0.0767P)^2]$
$wR(F^2) = 0.127$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.96	$(\Delta/\sigma)_{\rm max} < 0.001$
1805 reflections	$\Delta \rho_{\rm max} = 0.86 \ {\rm e \ A^{-3}}$
99 parameters	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm A}^{-3}$

Table 1

Selected geometric parameters (Å, °).

S-O1 S-O2 S-O3 S-C	1.444 (3) 1.446 (2) 1.455 (2) 1.847 (4)	C-Cl2 C-Cl3 C-Cl1	1.757 (4) 1.764 (3) 1.777 (3)
$\begin{array}{c} O1 - S - O2 \\ O1 - S - O3 \\ O2 - S - O3 \\ O1 - S - C \\ O2 - S - C \end{array}$	115.05 (15) 113.80 (14) 113.77 (13) 104.58 (17) 104.09 (16)	O3-S-C Cl2-C-Cl3 Cl2-C-Cl1 Cl3-C-Cl1	103.84 (14) 110.18 (19) 110.11 (19) 109.25 (17)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O4-H41\cdots O3^i$	0.85 (5)	2.09 (5)	2.871 (4)	153 (4)
$O4-H42\cdots O1^{ii}$	0.74 (5)	2.54 (5)	3.016 (4)	123 (5)
$O4-H42\cdots O2^{iii}$	0.74 (5)	2.25 (5)	2.915 (4)	148 (5)

Symmetry codes: (i) $-x - \frac{1}{2}, y + \frac{1}{2}, -z$; (ii) $-x - \frac{1}{2}, y - \frac{1}{2}, -z$; (iii) -x, -y, -z.

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 1997); cell refinement: CELL in IPDS Software; data reduction: INTE-GRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This work was supported by a grant from the Swedish Research Council.

Table 3

S-C and mean S-O and C-X bond distances (Å) and O-S-O, C-S–O and X–C–X angles (°) for several related compounds (X = F or CI).

Compound	S-C	S-O	C-X	O-S-O	C-S-O	X-C-X
1	1.754(2)	1.45		111.0	106.0	
2	1.746(2)	1.45	_	112.8	105.9	_
3	1.747 (6)	1.44	_	112.5	106.2	-
4	1.811 (4)	1.43	1.31	114.3	104.1	108.5
5	1.809 (4)	1.43	1.31	113.8	104.3	108.7
6	1.833 (6)	1.44	1.31	114.4	103.9	109.3
7	1.878	1.438	1.777	_	102.3	_
8	1.907	1.476	1.778	_	101.7	-
9	1.847 (4)	1.45	1.77	114.2	104.2	109.8
10	-	-	1.76	-	-	110.9

Notes: (1) CH₃SO₃Na (Wei & Hingerty, 1981); (2) C₂₀H₂₃ClN₃OS⁺·CH₃SO₃⁻ (Wei, 1981); (3) C₂₁H₂₆NO⁺ CH₃SO₃⁻ H₂O (Jones et al., 1978); (4) CF₃SO₃H 2H₂O at 225 K (Delaplane et al., 1975); (5) CF₃SO₃Na (Sofina et al., 2003); (6) Tb(H₂O)₉(CF₃SO₃)₃ (Abbasi et al., 2005); (7) CCl₃SO₃⁻ at HF6-31G* (Gejji et al., 1994); (8) CCl₃SO₃⁻ at MP26-31G* (Gejji et al., 1994); (9) CCl₃SO₃Na·H₂O (this work); (10) CHCl₃ (Sutton, 1965)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC3009). Services for accessing these data are described at the back of the journal.

References

- Abbasi, A., Lindqvist-Reis, P., Eriksson, L., Sandström, D., Lidin, S., Persson, I. & Sandström, M. (2005). Chem. Eur. J. 11, 4065-4077.
- Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-str. 1, Bonn, Germany. Bürger, H., Burczyk, K. & Blaschette, A. (1970). Monatsh. Chem. 101, 102-119.
- Delaplane, R. G., Lundgren, J.-O. & Olovsson, I. (1975). Acta Cryst. B31, 2202-2207.
- Edwards, H. G. M. & Smith, D. N. (1991). J. Mol. Struct. 263, 11-20.
- Gejji, S. P., Hermansson, K. & Lindgren, J. (1994). J. Phys. Chem. 98, 8687-8692

Jones, P. G., Kennard, O. & Horn, A. S. (1978). Acta Cryst. B34, 3125-3127.

Kolbe, H. (1845). Ann. Chem. Pharm. 54, 145-188.

- Miles, M. G., Doyle, G., Cooney, R. P. & Tobias, R. S. (1969). Spectrochim. Acta Part A, 25, 1515-1526.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sofina, N., Peters, E.-M. & Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 1431-1436.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (1997). IPDS Software (Version 2.87) and X-RED (Version 1.09). Stoe & Cie GmbH, Darmstadt, Germany.
- Sutton, L. E. (1965). Tables of Interatomic Distances and Configurations in Molecules and Ions: Supplement 1956-1959. London: The Chemical Society. Wei, C. H. (1981). Acta Cryst. B37, 844-849.
- Wei, C. H. & Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.
- Wulfsberg, G., Cochran, M., Wilcox, J., Koritsanszky, T., Jackson, D. J. & Howard, J. C. (2004). Inorg. Chem. 43, 2031-2042.