Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Sodium trichloromethanesulfonate monohydrate

Emiliana Damian,* Lars Eriksson and Magnus Sandström

Department of Physical, Inorganic and Structural Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
Correspondence e-mail: emiliana@struc.su.se

Received 9 June 2006
Accepted 7 July 2006
Online 11 August 2006
Sodium trichloromethanesulfonate monohydrate, $\mathrm{Na}^{+} \cdot \mathrm{CCl}_{3^{-}}$ $\mathrm{SO}_{3}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes in $P 2_{1} / a$ with all the atoms located in general positions. The trichloromethanesulfonate (trichlate) anion consists of pyramidal SO_{3} and CCl_{3} groups connected via an $\mathrm{S}-\mathrm{C}$ bond in a staggered conformation with approximate $C_{3 v}$ symmetry. The water molecule is hydrogen bonded to the sulfonate O atoms, with one water H atom forming weak bifurcated $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to two different trichlate ions. Two water O atoms and three O atoms from different SO_{3} groups form a square-pyramidal arrangement around the sodium ion.

Comment

Trichloromethanesulfonate (trichlate, $\mathrm{CCl}_{3} \mathrm{SO}_{3}{ }^{-}$) salts were prepared more than 150 years ago (Kolbe, 1845). The trichlate and the related trifluoromethanesulfonate (triflate, $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$) and mesylate $\left(\mathrm{CH}_{3} \mathrm{SO}_{3}{ }^{-}\right)$anions have been studied by means of vibrational spectroscopy complemented by normal coordinate analysis (Miles et al., 1969; Bürger et al., 1970). Gejji et al. (1994) performed quantum chemical calculations of the structure and vibrational frequencies of trichloromethanesulfonic acid, $\mathrm{CCl}_{3} \mathrm{SO}_{3} \mathrm{H}$, and its anion. Edwards \& Smith (1991) reported vibrational assignments of the acid and determined its dissociation constant in $2 \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution by Raman measurements. A recent ${ }^{35} \mathrm{Cl}$ nuclear quadrupole resonance study concluded that the trichlate anion has weaker coordination ability than several chloroacetate anions (Wulfsberg et al., 2004). The present study of sodium trichloromethanesulfonate monohydrate $\left(\mathrm{CCl}_{3} \mathrm{SO}_{3} \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ seems to be the first crystal structure reported containing a trichlate anion.

The crystal structure is described in the space group $P 2_{1} / a$, with all atoms located on general sites (4e). The pyramidal SO_{3} and CCl_{3} groups of the trichlate anion are in a staggered conformation (Fig. 1 and Table 1). One water H atom (H42) is involved in a weak bifurcated hydrogen bond to two O atoms, O 1 and O 2 , of different trichlate ions, while the other H atom (H41) forms a shorter hydrogen bond (Fig. 1 and Table 2). The

Figure 1
The trichlate ion and the environment of the sodium ion and the water molecule (40% probability displacement ellipsoids). Broken lines indicate hydrogen bonds (see Table 2 for geometric details). [Symmetry codes: (i) $-x-\frac{1}{2}, y+\frac{1}{2},-z$; (ii) $-x-\frac{1}{2}, y-\frac{1}{2},-z$; (iii) $-x,-y,-z$; (iv) x, $y-1, z ;(\mathrm{v})-x,-y-1,-z$.]
Na^{+}ion has an almost square-pyramidal environment of O atoms from two water molecules and three different SO_{3} groups, with a mean $\mathrm{Na}^{+} \ldots \mathrm{O}$ distance of $2.38 \AA$.

As shown in Table 3, the mean $\mathrm{S}-\mathrm{O}$ bond distance is not significantly influenced by hydrogen bonding or by replacing the $-\mathrm{CCl}_{3}$ group with $-\mathrm{CH}_{3}$ or $-\mathrm{CF}_{3}$. The $\mathrm{C}-\mathrm{S}$ bond increases considerably from the mesylate $\left(\mathrm{H}_{3} \mathrm{C}-\mathrm{SO}_{3}{ }^{-}\right)$to the triflate $\left(\mathrm{F}_{3} \mathrm{C}-\mathrm{SO}_{3}{ }^{-}\right)$ion, with an even longer $\mathrm{C}-\mathrm{S}$ bond for the trichlate $\left(\mathrm{Cl}_{3} \mathrm{C}-\mathrm{SO}_{3}{ }^{-}\right)$, as predicted by theoretical studies. The electron-withdrawing effect of the electronegative Cl and F atoms evidently weakens the $\mathrm{C}-\mathrm{S}$ bond and makes the $\mathrm{O}-$ $\mathrm{S}-\mathrm{O}$ angles about 2° larger than in the mesylate ion. The mean $\mathrm{C}-\mathrm{Cl}$ bond length and $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angle determined in this work agree well with the values found for trichloromethane (Sutton, 1965).

Experimental

$\mathrm{CCl}_{3} \mathrm{SO}_{3} \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}$ was obtained from a solution prepared by stirring and heating [323 (2) K] wax-like crystals of trichloromethanesulfonyl chloride $\left(\mathrm{CCl}_{3} \mathrm{SO}_{2} \mathrm{Cl}, 2.547 \mathrm{~g}\right.$, Aldrich) in an excess (36 ml) of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution (Edwards \& Smith, 1991). After evaporating the solvent, first in a rotary evaporator at 355 (2) K and then at reduced pressure in a vacuum desiccator, colourless crystals were obtained, which were recrystallized from water.

Crystal data

$\mathrm{Na}^{+} \cdot \mathrm{CCl}_{3} \mathrm{O}_{3} \mathrm{~S}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=239.43$
Monoclinic, $P 2_{1} / a$
$a=10.727$ (7) \AA
$b=5.828$ (3) \AA
$c=12.613$ (9) \AA
$\beta=103.24$ (8$)^{\circ}$
$V=767.6(9) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=2.072 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.47 \mathrm{~mm}^{-1} \\
& T=291(2) \mathrm{K} \\
& \text { Pentagonal prism, colourless } \\
& 0.5 \times 0.3 \times 0.1 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS diffractometer φ scans
Absorption correction: numerical
(X-RED; Stoe \& Cie, 1997)
$T_{\text {min }}=0.579, T_{\text {max }}=0.953$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.127$
$S=0.96$
1805 reflections
99 parameters

6794 measured reflections 1805 independent reflections 1312 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.100$
$\theta_{\text {max }}=27.8^{\circ}$

All H -atom parameters refined $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0767 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.86 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S-O1	$1.444(3)$	$\mathrm{C}-\mathrm{Cl} 2$	$1.757(4)$
$\mathrm{S}-\mathrm{O} 2$	$1.446(2)$	$\mathrm{C}-\mathrm{Cl} 3$	$1.764(3)$
$\mathrm{S}-\mathrm{O} 3$	$1.455(2)$	$\mathrm{C}-\mathrm{Cl} 1$	$1.777(3)$
$\mathrm{S}-\mathrm{C}$	$1.847(4)$		
			$103.84(14)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 2$	$115.05(15)$	$\mathrm{O} 3-\mathrm{S}-\mathrm{C}$	$110.18(19)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{O} 3$	$113.80(14)$	$\mathrm{Cl} 2-\mathrm{C}-\mathrm{Cl} 3$	$110.11(19)$
$\mathrm{O} 2-\mathrm{S}-\mathrm{O} 3$	$113.77(13)$	$\mathrm{Cl} 2-\mathrm{C}-\mathrm{Cl} 1$	$109.25(17)$
$\mathrm{O} 1-\mathrm{S}-\mathrm{C}$	$104.58(17)$	$\mathrm{Cl} 3-\mathrm{C}-\mathrm{Cl} 1$	
$\mathrm{O} 2-\mathrm{S}-\mathrm{C}$	$104.09(16)$		

Table 2
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 41 \cdots 3^{\text {i }}$	0.85 (5)	2.09 (5)	2.871 (4)	153 (4)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 1^{\text {ii }}$	0.74 (5)	2.54 (5)	3.016 (4)	123 (5)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 2^{\text {iii }}$	0.74 (5)	2.25 (5)	2.915 (4)	148 (5)

Symmetry codes: (i) $-x-\frac{1}{2}, y+\frac{1}{2},-z$; (ii) $-x-\frac{1}{2}, y-\frac{1}{2},-z$; (iii) $-x,-y,-z$.

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 1997); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

This work was supported by a grant from the Swedish Research Council.

Table 3
$\mathrm{S}-\mathrm{C}$ and mean $\mathrm{S}-\mathrm{O}$ and $\mathrm{C}-X$ bond distances (\AA) and $\mathrm{O}-\mathrm{S}-\mathrm{O}, \mathrm{C}-$ $\mathrm{S}-\mathrm{O}$ and $X-\mathrm{C}-X$ angles (${ }^{\circ}$) for several related compounds ($X=\mathrm{F}$ or Cl).

Compound	$\mathrm{S}-\mathrm{C}$	$\mathrm{S}-\mathrm{O}$	$\mathrm{C}-X$	$\mathrm{O}-\mathrm{S}-\mathrm{O}$	$\mathrm{C}-\mathrm{S}-\mathrm{O}$	$X-\mathrm{C}-X$
1	$1.754(2)$	1.45	-	111.9	106.9	-
2	$1.746(5)$	1.45	-	112.8	105.9	-
3	$1.747(6)$	1.44	-	112.5	106.2	-
4	$1.811(4)$	1.43	1.31	114.3	104.1	108.5
5	$1.809(4)$	1.43	1.31	113.8	104.3	108.7
6	$1.833(6)$	1.44	1.31	114.4	103.9	109.3
7	1.878	1.438	1.777	-	102.3	-
8	1.907	1.476	1.778	-	101.7	-
9	$1.847(4)$	1.45	1.77	114.2	104.2	109.8
10	-	-	1.76	-	-	110.9

Notes: (1) $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{Na}$ (Wei \& Hingerty, 1981); (2) $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{OS}^{+} . \mathrm{CH}_{3} \mathrm{SO}_{3}{ }^{-}$(Wei, 1981); (3) $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}^{+} \cdot \mathrm{CH}_{3} \mathrm{SO}_{3}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$ (Jones et al., 1978); (4) $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ at 225 K (Delaplane et al., 1975); (5) $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Na}$ (Sofina et al., 2003); (6) $\mathrm{Tb}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{9}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3}$ (Abbasi et al., 2005); (7) $\mathrm{CCl}_{3} \mathrm{SO}_{3}{ }^{-}$at HF6-31G* (Gejji et al., 1994); (8) $\mathrm{CCl}_{3} \mathrm{SO}_{3}{ }^{-}$at MP26-31G* (Gejji et al., 1994); (9) $\mathrm{CCl}_{3} \mathrm{SO}_{3} \mathrm{Na} \cdot \mathrm{H}_{2} \mathrm{O}$ (this work); (10) CHCl_{3} (Sutton, 1965).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC3009). Services for accessing these data are described at the back of the journal.

References

Abbasi, A., Lindqvist-Reis, P., Eriksson, L., Sandström, D., Lidin, S., Persson, I. \& Sandström, M. (2005). Chem. Eur. J. 11, 4065-4077.

Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-str. 1, Bonn, Germany.
Bürger, H., Burczyk, K. \& Blaschette, A. (1970). Monatsh. Chem. 101, 102119.

Delaplane, R. G., Lundgren, J.-O. \& Olovsson, I. (1975). Acta Cryst. B31, 2202-2207.
Edwards, H. G. M. \& Smith, D. N. (1991). J. Mol. Struct. 263, 11-20.
Gejji, S. P., Hermansson, K. \& Lindgren, J. (1994). J. Phys. Chem. 98, 86878692.

Jones, P. G., Kennard, O. \& Horn, A. S. (1978). Acta Cryst. B34, 3125-3127.
Kolbe, H. (1845). Ann. Chem. Pharm. 54, 145-188.
Miles, M. G., Doyle, G., Cooney, R. P. \& Tobias, R. S. (1969). Spectrochim. Acta Part A, 25, 1515-1526.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sofina, N., Peters, E.-M. \& Jansen, M. (2003). Z. Anorg. Allg. Chem. 629, 14311436.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1997). IPDS Software (Version 2.87) and X-RED (Version 1.09). Stoe \& Cie GmbH, Darmstadt, Germany.
Sutton, L. E. (1965). Tables of Interatomic Distances and Configurations in Molecules and Ions: Supplement 1956-1959. London: The Chemical Society. Wei, C. H. (1981). Acta Cryst. B37, 844-849.
Wei, C. H. \& Hingerty, B. E. (1981). Acta Cryst. B37, 1992-1997.
Wulfsberg, G., Cochran, M., Wilcox, J., Koritsanszky, T., Jackson, D. J. \& Howard, J. C. (2004). Inorg. Chem. 43, 2031-2042.

